Optimizing seeding and culture methods to engineer smooth muscle tissue on biodegradable polymer matrices.

نویسندگان

  • B S Kim
  • A J Putnam
  • T J Kulik
  • D J Mooney
چکیده

The engineering of functional smooth muscle (SM) tissue is critical if one hopes to successfully replace the large number of tissues containing an SM component with engineered equivalents. This study reports on the effects of SM cell (SMC) seeding and culture conditions on the cellularity and composition of SM tissues engineered using biodegradable matrices (5 x 5 mm, 2-mm thick) of polyglycolic acid (PGA) fibers. Cells were seeded by injecting a cell suspension into polymer matrices in tissue culture dishes (static seeding), by stirring polymer matrices and a cell suspension in spinner flasks (stirred seeding), or by agitating polymer matrices and a cell suspension in tubes with an orbital shaker (agitated seeding). The density of SMCs adherent to these matrices was a function of cell concentration in the seeding solution, but under all conditions a larger number (approximately 1 order of magnitude) and more uniform distribution of SMCs adherent to the matrices were obtained with dynamic versus static seeding methods. The dynamic seeding methods, as compared to the static method, also ultimately resulted in new tissues that had a higher cellularity, more uniform cell distribution, and greater elastin deposition. The effects of culture conditions were next studied by culturing cell-polymer constructs in a stirred bioreactor versus static culture conditions. The stirred culture of SMC-seeded polymer matrices resulted in tissues with a cell density of 6.4 +/- 0.8 x 10(8) cells/cm3 after 5 weeks, compared to 2.0 +/- 1.1 x 10(8) cells/cm3 with static culture. The elastin and collagen synthesis rates and deposition within the engineered tissues were also increased by culture in the bioreactors. The elastin content after 5-week culture in the stirred bioreactor was 24 +/- 3%, and both the elastin content and the cellularity of these tissues are comparable to those of native SM tissue. New tissues were also created in vivo when dynamically seeded polymer matrices were implanted in rats for various times. In summary, the system defined by these studies shows promise for engineering a tissue comparable in many respects to native SM. This engineered tissue may find clinical applications and provide a tool to study molecular mechanisms in vascular development.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Combining chondrocytes and smooth muscle cells to engineer hybrid soft tissue constructs.

Engineering new tissues using cell transplantation may provide a valuable tool for reconstructive surgery applications. Chondrocyte transplantation in particular has been successfully used to engineer new tissue masses due to the low metabolic requirements of these cells. However, the engineered cartilaginous tissue is too rigid for many soft tissue applications. We propose that hybrid tissue e...

متن کامل

Optimal culture conditions for constructing durable biografts for repairing the impaired heart--dynamic cell culture with pre-seeding.

BACKGROUND Tissue engineering with cell seeded biodegradable material has attracted attention as a novel means of treating the severely impaired heart. Here, we consider optimal preparation of a durable biograft using dynamic and static cultures. METHODS Vascular smooth muscle cells (VSMCs) derived from the rat aorta were seeded onto biodegradable material P (LA/CL) (poly-L-lactide-ε-caprolac...

متن کامل

A collagen/vascular smooth muscle cells (SMCs) incorporating elastic scaffold for tissue-engineered vascular graft

Statement of Purpose: This study was focused on a collagen/cell mixture seeding method to improve the adhesion and proliferation of vascular smooth muscle cells (SMCs) in tubular porous scaffolds for vascular grafts application. Recently, poly(L-lactide-co-εcaprolactone) (PLCL) copolymers have been applied as a biomaterial for vascular graft due to the high elastic property. We previously repor...

متن کامل

Vascular elastic laminae: anti-inflammatory properties and potential applications to arterial reconstruction.

Biomaterials, including non-biodegradable and biodegradable polymers, and collagen and fibrin matrices, have been used in experimental and clinical arterial reconstruction. While these biomaterials exhibit various characteristics suitable for arterial reconstruction, the patency of biomaterial-based arterial substitutes remains problematic because of inflammation and thrombogenesis. Endothelial...

متن کامل

Open pore biodegradable matrices formed with gas foaming.

Engineering tissues utilizing biodegradable polymer matrices is a promising approach to the treatment of a number of diseases. However, processing techniques utilized to fabricate these matrices typically involve organic solvents and/or high temperatures. Here we describe a process for fabricating matrices without the use of organic solvents and/or elevated temperatures. Disks comprised of poly...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biotechnology and bioengineering

دوره 57 1  شماره 

صفحات  -

تاریخ انتشار 1998